Лизок
Организатор
- #1
[Нетология] Язык R для аналитики [Андрей Макеев, Ольга Титова]
- Ссылка на картинку
Научитесь легко собирать данные из различных систем. Прокачайтесь до уровня middle в прогнозировании и визуализации в R-Studio. Автоматизируйте рутинные задачи
R – самый популярный язык программирования среди аналитиков
по данным опроса O’Reilly Media
Мы живём в эпоху цифровизации, когда каждый процесс можно автоматизировать и упростить свою работу. На языке R можно написать код, который освободит вам время для новых проектов.
Самая универсальная область применения R — аналитика. Используя R, вы можете провести статистические тесты и проверить гипотезы, построить графики и сделать прогноз.
Кому подойдёт этот курс
- Собирать данные из большинства аналитических систем
- Преобразовывать R-скрипты для переработки получаемых данных в зависимости от задач
- Анализировать процессы с помощью скриптов и показывать результаты на графиках
R – самый популярный язык программирования среди аналитиков
по данным опроса O’Reilly Media
Мы живём в эпоху цифровизации, когда каждый процесс можно автоматизировать и упростить свою работу. На языке R можно написать код, который освободит вам время для новых проектов.
Самая универсальная область применения R — аналитика. Используя R, вы можете провести статистические тесты и проверить гипотезы, построить графики и сделать прогноз.
Кому подойдёт этот курс
- Интернет-маркетологам
Получите инструмент для работы с данными. Автоматизируете рутинные операции и научитесь создавать информативные отчёты. Начнёте говорить с программистами на одном языке.
- Начинающим аналитикам
Добавите ещё один профессиональный навык в резюме и углубите понимание статистики. Научитесь собирать и анализировать в одном месте данные по всем проектам.
- Собирать данные из большинства аналитических систем
- Преобразовывать R-скрипты для переработки получаемых данных в зависимости от задач
- Анализировать процессы с помощью скриптов и показывать результаты на графиках
Продажник:Спойлер: Программа курса
Модуль 1 - Базовые принципы программирования на R
Рассмотрим базовые возможности языка R, научимся настраивать R-Studio и начнём использовать для простых операций.
1. R и R-Studio
2. Переменные их типы
3. Объявление переменных в R
4. Арифметические операции
5. Логические переменные и операции
6. Ветвление
7. Циклы
Содержание Модуль 2 - Отличия R от традиционного программирования
Познакомимся с векторами и техниками программирования в R.
1. Понятие вектора, векторные операции
2. Использование функций
3. Обзор основных функций и пакетов R
Содержание Модуль 3 - Работа с наборами данных
Научимся импортировать данные в R, познакомимся с фреймами данных, освоим базовые операции (просмотр, обращение к данным, преобразование, соединение, фильтрация).
1. DataFrame — что это и для чего
2. Импорт DataFrame в R
3. Простейшее исследование DataFrame
4. Доступ к переменным DataFrame (знак $)
5. Базовые операции с DataFrame
6. Фильтрация DataFrame
Содержание Модуль 4 - Визуализация в R
Познакомимся со способами визуализации данных в R, научимся применять визуализацию в зависимости от данных, интерпретировать графики. Научимся оценивать распределение, описательные статистики для двух и более переменных, узнаем о корреляции и регрессии.
1. Основы визуализации в R
2. Построение гистограмм — функция hist
3. Построение boxplot
4. Построение графиков зависимостей двух переменных
Содержание Модуль 5 - Продвинутая визуализация в R
Познакомимся с продвинутыми способами визуализации данных в R, научимся работать со сложными наборами данных и интерпретировать их.
1. Базовый шаблон ggplot
2. Геометрические типы и преобразования
3. Управление графическими параметрами
4. Группировка данных
5. Системы координат
6. Оси, легенды, подписи
7. Разделение графиков по фасетам
8. Интерактивная визуализация в Shiny
Содержание Модуль 6 - Исследовательский анализ данных в R
Научимся подготавливать данные к дальнейшей работе, анализу структуры, классификации без обучения (кластерный анализ).
1. Стандартизация данных
2. Иерархическая кластеризация
3. Метод k-средних (kmeans)
4. Основы мультивариативного анализа в R
Содержание Модуль 7 - Основы прогнозирования в R
Узнаем про основные модели прогнозирования, познакомимся с линейной регрессией и научимся её построению, оценке и использованию.
1. Модели прогнозирования
2. Линейная регрессия
3. Построение модели линейной регрессии в R
4. Оценка модели линейной регрессии и её использование
Содержание Модуль 8 - Создание и использование моделей в R
Узнаем больше о различных моделях прогнозирования и их использовании в полевых условиях, научимся их строить и валидировать. Познакомимся с работой с предсказанием категории и с несбалансированными данными.
- Логистическая регрессия
- Основные модели, основанные на деревьях решений
- Валидация модели
- Дилемма смещения-дисперсии
- Работа с предсказанием категории
- Работа с несбалансированными данными
- Имплементация модели в работу компании
Зарегистрируйтесь
, чтобы посмотреть скрытый авторский контент.