Скачать 

[Яндекс.Практикум] Специалист по Data Science - Часть 3 из 8.

Цена: 150 РУБ
Организатор: Sweet_Berry
Список участников складчины:
  • 1. inter
Sweet_Berry
Sweet_Berry
Организатор
  • #1

[Яндекс.Практикум] Специалист по Data Science - Часть 3 из 8.

Ссылка на картинку
Специалист по Data Science структурирует и анализирует большие объёмы данных, применяет машинное обучение для предсказания событий и обнаружения неочевидных закономерностей. Помогает создавать и улучшать продукты в бизнесе, промышленности и науке. Мы хотим научить вас основным инструментам этой профессии: Python и его библиотекам, в том числе Scikit-Learn и XGBoost, Jupyter Notebook, SQL.

Основы Python и анализа данных: бесплатный вводный курс
20 часов

Познакомитесь с языком программирования Python, библиотекой Pandas, а также средой программирования Jupyter. Узнаете основные концепции анализа данных и поймёте, чем занимаются аналитики и специалисты по Data Science.

Предобработка данных
20 часов

Научитесь очищать данные от выбросов, пропусков и дубликатов, а также преобразовывать разные форматы данных.

Исследовательский анализ данных
20 часов

Изучите основы теории вероятностей и статистики. Примените их для исследования основных свойств данных, поиска закономерностей, распределений и аномалий. Познакомитесь с библиотеками SciPy и Matplotlib. Отрисуете диаграммы, поупражняетесь в анализе графиков.

Статистический анализ данных
20 часов

Научитесь анализировать взаимосвязи в данных методами статистики. Узнаете, что такое статистическая значимость, гипотезы и доверительные интервалы.

Введение в машинное обучение
20 часов

Освоите основные концепции машинного обучения. Познакомитесь с библиотекой Scikit-Learn и примените её для создания первого проекта с машинным обучением.

Обучение с учителем (классификация и регрессия)
20 часов

Углубитесь в самую востребованную область машинного обучения — обучение с учителем. Узнаете, как обращаться с несбалансированными данными.

Машинное обучение в бизнесе
20 часов

Примените свои знания о машинном обучении к задачам бизнеса. Узнаете, что такое бизнес-метрики, KPI и A/B-тестирование.

Линейная алгебра
20 часов

Заглянете внутрь нескольких изученных ранее алгоритмов и лучше поймёте, как их применять. На практике освоите с нуля главные концепции линейной алгебры: линейные пространства, линейные операторы, евклидовы пространства.

Численные методы и алгоритмы
20 часов

Разберёте ряд алгоритмов и приспособите их к решению практических задач с использованием численных методов. Приближённые вычисления, оценка сложности алгоритма, градиентный спуск.

Тексты, временные ряды и feature engineering
20 часов

Узнаете, что такое feature engineering в целом. Примените его к текстам и временным рядам. Научитесь векторизировать тексты инструментами word2vec, GloVe, FastText.

Извлечение данных
20 часов

Познакомитесь с основными системами хранения данных — реляционными базами и распределёнными хранилищами. Научитесь извлекать эти данные запросами на языке SQL и методами библиотеки PySpark.

Компьютерное зрение
20 часов

Научитесь решать простые задачи компьютерного зрения с привлечением готовых нейронных сетей и библиотеки Keras. Одним глазком заглянете в Deep learning.

Рекомендации и обучение без учителя
20 часов

Узнаете, что такое рекомендательные системы, и построите свою. Познакомитесь с рядом задач обучения без учителя.
 
Зарегистрируйтесь , чтобы посмотреть скрытый авторский контент.
Похожие складчины
  • в разделе: Программирование
  • в разделе: Программирование
  • в разделе: Программирование
  • в разделе: Программирование
  • в разделе: Программирование

Войдите или зарегистрируйтесь, чтобы комментировать и скачивать складчины!

Учетная запись позволит вам участвовать в складчинах и оставлять комментарии

Регистрация

Создайте аккаунт на форуме. Это не сложно!

Вход

Вы уже зарегистрированы? Войдите.

Сверху